

Indicators of chemical reactions

Emission of light or heat

Formation of a gas

Formation of a precipitate

Color change

Emission of odor

All chemical reactions:

- have two parts
- Reactants the substances you start with
- Products- the substances you end up with
- The reactants turn into the products.
- Reactants → Products

Describing chemical reaction

- The way atoms are joined is changed
- Atoms aren't created or destroyed.
- Can be described several ways
- In a sentence
- Copper reacts with chlorine to form copper (II) chloride.
- In a word equation
- \bigcirc Copper + chlorine \rightarrow copper (II) chloride
- \bullet $Cu_{(s)} + Cl_{2(g)} \rightarrow CuCl_{2(aq)}$

Symbols used in equations

- (s) after the formula -solid $Cu_{(s)}$
- (g) after the formula -gas $H_{2(g)}$
- \bullet (I) after the formula -liquid $H_2O_{(I)}$
- (aq) after the formula dissolved in water, an aqueous solution. CaCl_{2 (aq)}
- used after a product indicates a gas(same as (g))O₂
- ↓ used after a product indicates a solid (same as (s))
 CaCo₃ ↓

Symbols used in equations

indicates a reversible reaction.

 $\frac{\Delta}{\text{is supplied to the reaction.}}$ shows that heat

Pt, or is used to indicate a catalyst used supplied, in this case, platinum.

 $\xrightarrow{\text{pressure}}$, $\xrightarrow{\text{2 atm}}$ indicates a pressure other than STP

Summary of Symbols

Reactants Symbol	and Products <i>Meaning</i>
(s) or (cr)	solid or crystal
(1)	liquid
(g)	gas
(aq)	in aqueous solution (dissolved in water)
1	solid precipitate product forms
\uparrow	gaseous product forms

Reaction Conditions Symbol Meaning			
\longrightarrow	"produces" or "yields," indicating result of reaction		
\longrightarrow	reaction in which products can re- form into reactants; final result is a mixture of products and reactants		
$\xrightarrow{\Delta}$ or $\xrightarrow{\text{heat}}$	reactants are heated		
$\xrightarrow{1.0\times10^8\mathrm{kPa}}$	pressure at which reaction is carried out		
	temperature at which reaction is carried out		
$\stackrel{\mathrm{Pd}}{\longrightarrow}$	chemical formula of a catalyst added to speed up a reaction		
e^{-}	electrolysis		

What is a catalyst?

- A substance that speeds up a reaction without being changed by the reaction.
 - Enzymes are biological or protein catalysts.

Reaction Energy

- * All chemical reactions are accompanied by a change in energy.
- * Exothermic reactions that release energy to their surroundings (usually in the form of heat) $o\Delta H$ (enthalpy) is negative energy leaving system

Endothermic - reactions that need to absorb heat from their surroundings to proceed. $o\Delta H$ (enthalpy) is positive - energy coming into the system

Reaction Energy

- Spontaneous Reactions Reactions that proceed immediately when two substances are mixed together. Not all reactions proceed spontaneously.
- *Activation Energy the amount of energy that is required to start a chemical reaction.
 - Once activation energy is reached the reaction continues until you run out of material to react.

Progress of the reaction — >

Formula Equation

- Uses formulas and symbols to describe a reaction
 - doesn't indicate how many.
- All chemical equations are sentences that describe reactions.

Diatomic elements

- There are 8 elements that never want to be alone.
- They form diatomic molecules.
- \bullet H_2 , N_2 , O_2 , F_2 , Cl_2 , Br_2 , I_2 , and At_2
- The -ogens and the -ines
 - 1 + 7 pattern on the periodic table

Element	Symbol	Molecular formula	Physical state at room temperature
Hydrogen	Н	H_2	gas
Nitrogen	N	N ₂	gas
Oxygen	О	O_2	gas
Fluorine	F	F_2	gas
Chlorine	Cl	Cl ₂	gas
Bromine	Br	Br ₂	liquid
Iodine	Ι	I_2	solid

Convert this to an equation

Solid iron (III) sulfide reacts with gaseous hydrogen chloride to form iron (II) chloride and hydrogen sulfide gas.

$$Fe_2S_{3(s)} + HCl_{(g)} \rightarrow FeCl_{2(s)} + H_2S_{(g)}$$

Convert this to an equation

Nitric acid dissolved in water reacts with solid sodium carbonate to form liquid water and carbon dioxide gas and sodium nitrate dissolved in water.

$$HNO_{3 (aq)} + Na_{2}CO_{3 (s)} \rightarrow NaNO_{3 (aq)} + H_{2}O_{(1)}$$

The other way

$$Fe_{(s)} + O_{2(g)} \rightarrow Fe_2O_{3(s)}$$

Solid iron reacts with oxygen gas to form solid iron oxide (rust).

A silver spoon tarnishes. The solid silver reacts with sulfur in the air to make solid silver sulfide, the black material we call tarnish.

$$Ag_{(s)} + H_2S_{(g)} + O_{2(g)} \rightarrow Ag_2S_{(s)} + H_2O$$

Balancing Equations

$$\frac{2}{2}$$
 H₂(g) + $\frac{2}{2}$ H₂O(I)

- What Happened to the Other Oxygen Atom?
- •This equation is not balanced!
- •Two hydrogen atoms from a hydrogen molecule (H₂) combines with one of the oxygen atoms from an oxygen molecule (O₂) to form H₂O. Then, the remaining oxygen atom combines with two more hydrogen atoms (from another H₂ molecule) to make a second H₂O molecule.

Translate Equation

Aluminum metal reacts with liquid bromine to form solid aluminum bromide

2 Al(s) + 3 Br₂(l)
$$\rightarrow$$
 2 AlBr₃(s)

Translate some more!

- 1. calcium fluoride and sulfuric acid make calcium sulfate and hydrofluoric acid
- 2. calcium carbonate will come apart when you heat it to leave calcium oxide and carbon dioxide.
- 3. ammonia gas when it is pressed into water will make ammonium hydroxide.
- 4. aluminum sulfate and calcium hydroxide become aluminum hydroxide and calcium sulfate.
- 5. copper metal and silver nitrate react to form silver metal and copper (II) nitrate.
- 6. sodium metal and chlorine react to make sodium chloride.

Types of Reactions

- There are millions of reactions.
- Can't remember them all
- Fall into several categories.
- We will learn 6 types.
- We will be able to predict the products.
- For some we will be able to predict whether they will happen at all.
- We will recognize them by the reactants

Synthesis Reactions

- Also called combination reactions
- 2 elements, or compounds combine to make one compound.
- $A + B \rightarrow AB$
- $Na_{(s)} + Cl_{2(g)} \rightarrow NaCl_{(s)}$
- $Ca_{(s)} + O_{2(g)} \rightarrow CaO_{(s)}$
- $950_{3(s)} + H_2O_{(l)} \rightarrow H_2SO_{4(s)}$
- We can predict the products if they are two elements.
- $Mg_{(s)} + N_{2(g)} \rightarrow Mg_3N_{2(s)}$

A simulation of the reaction: $2H_2 + O_2 \rightarrow 2H_2O$

Decomposition Reactions

- decompose = fall apart
- one compound (reactant) falls apart into two or more elements or compounds.
- Usually requires energy

Decomposition Reactions

- Can predict the products if it is a binary compound
- Made up of only two elements
- Falls apart into its elements
- electricity ♣ H2O
- HgO _

$$H_{2(g)} + O_2$$

$$H_{2(g)} + O_2$$

 $H_{(s)} + O_{2(g)}$

Decomposition Reactions

- If the compound has more than two elements you must be given one of the products
- The other product will be from the missing pieces
- $\stackrel{\bullet}{=}$ NiCO_{3 (aq)} $\stackrel{\Delta}{\longrightarrow}$ CO_{2 (g)} + Ni (s)
- \bullet $H_2CO_{3(aq)}$ \rightarrow $H_{2(g)}$ + $CO_{2(g)}$

Single Replacement

- Also referred to as single displacement
- One element replaces another
- Reactants must be an element and a compound.
- Products will be a different element and a different compound.
- $\bigcirc A + BC \rightarrow AC + B$
- 2Na + SrCl₂ → Sr + 2NaCl
- \P $F_2 + LiCl \rightarrow LiF + Cl_2$

Single Replacement

- We can tell whether a reaction will happen
- Some are more active than other
- More active replaces less active

Double Replacement

- Two things replace each other.
- Reactants must be two ionic compounds or acids.
 - Usually in aqueous solution

$$AB + CD \rightarrow AD + CB$$

ZnS + 2HCl
$$\rightarrow$$
 ZnCl + H_2S

AgNO₃ + NaCl
$$\rightarrow$$
 AgCl + NaNO₃

Combustion

A reaction in which a compound (often carbon) reacts with oxygen

$$CH_4 + O_2 \rightarrow CO_2 + H_2O$$

$$C_3H_8 + O_2 \rightarrow CO_2 + H_2O$$

$$C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O$$

The charcoal used in a grill is basically carbon. The carbon reacts with oxygen to yield carbon dioxide. The chemical equation for this reaction is $C + O_2 \rightarrow CO_2$

Acid/Base Reaction

- An acid and a base react to form a salt and water.
- Always in aqueous solution
- Acid (H⁺) + Base (OH⁻) \rightarrow Salt + H₂O

$$NH_4OH + H_2SO_4 \rightarrow (NH_4)_2SO_4 + H_2O_4$$

How to recognize which type

- Look at the reactants
 - Element(E), Compound(C)
- 🧶 🗗 + E
- E + C
- C + C
- Acid + Base

Synthesis

Decomposition

Single replacement

Redox

Double replacement

Acid/Base reaction

- Look at the Products
- CO2 + H2O

Combustion

Examples

- $H_2 + O_2 \rightarrow Synthesis$
- AgNO₃ + NaCl → <u>Double replacement</u>
- \sim Zn + H₂SO₄ \rightarrow Single replacement
- HgO → Decomposition
- $Mg(OH)_2 + H_2SO_3 \rightarrow Double replacement$

Examples

- \Rightarrow HNO₃ + KOH \rightarrow Acid/Base
- $CaPO_4 \rightarrow Decomposition$
- $AgBr + Cl_2 \rightarrow Single replacement$
- \sim Zn + $O_2 \rightarrow Synthesis$
- HgO + Pb→ Single replacement
- ◆HBr + NH₄OH →<u>Acid/Base</u>
- $\text{Cu}(OH)_2 + \text{KClO}_3 \rightarrow \text{Double replacement}$

Summary

An equation:

- Describes a reaction
- Must be balanced because to follow Law of Conservation of Energy
- Can only be balanced by changing the coefficients.
- Has special symbols to indicate state, and if catalyst or energy is required.
- Can describe 5 different types of reactions.